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Abstract. Basic concepts of crystal growth and their practical use to semi-quantitatively estimate growth 

processes are explained: surface energy and free energy, driving force of crystallization, atomically rough 

vs smooth interface structure and the corresponding normal vs layer-by-layer growth modes, application 

of the activated complex concept to derive kinetic coefficient characterizing crystal growth rate at a given 

driving force.  The Reader is supposed to be familiar with general physics and chemistry. No specific 

knowledge in crystal growth is required. 
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THE PREFACE 

Physics, chemistry, materials science and other branches of knowledge are becoming more and more 

sophisticated and are going into subtle chemical and physical details to meet practical engineering 

challenges.   It is hardly possible to memorize all current knowledge, to learn it from the web sites, and to 

practically make specific materials by just the wide trial and error approach.  The only compass in this 

ocean of knowledge and experience is clear in-depth understanding of general principles.   

Crystal growth is not an exception.  Its principles have been elaborated since the Gibbs times at the end of 

the 19-th Century by Wulf, Volmer, Kossel, Stranski, Kaishev, Frank, Cabrera and Burton and many, 

many other colleagues and are summarized in numerous books and reviews. See, for example, refs [1 – 8] 

and references therein.  In this text, I highlight the basis which may help to feel the roots of some major 

phenomena, to make simple quantitative estimates of core crystal growth processes, and, via practical 

application, to deeply feel major general concepts of basic statistical physics. The crystal growth models 

are still not perfect.  Therefore their applicability is also discussed in the text, also to allow better 

understanding.  Of course, selection of subjects is the matter of taste but I tried... The Sections 1,2,3,4 are 

devoted to the Interface, Driving Force, Layer-by-Layer Growth, and Normal Growth, respectively. 

  1.THE INTERFACE 

1.1 Qualitative Physics. 

Crystal nucleation and growth from vapor, liquid (melt of solution) or other solid are the major phase 

transition phenomena of the first order.  The only phenomenon of that class in addition to crystallization           

is the vapor-liquid phase transition.  All these transitions have one thing in common – an interface 



between the two phases.  Existence of the interface means that its free energy, , is positive:  > 0.   

Would it be zero or negative,  < 0, the two phases in contact would intermix down to the molecular 

scale.  Indeed, at  < 0, the larger the interface area, the lower is total free energy of the system.  For 

example, if a vessel with water and some vapor above it is heated above 373C, the pressure reaches 

22MPa = 22.10
7
dyn/cm

2
 = 22.10

7
erg/cm

2
 = 220atm and the border between liquid and vapor disappears.  

The vessel is now filled with homogeneous fluid with the density controlled by the initial volumes of the 

liquid and of the vapor.  Under those critical conditions the water-vapor interfacial free energy becomes 

zero.   Similar critical point may be observed in CO2 at its critical temperature 31C when the pressure 

reaches 74atm.   

A three dimensional (3D) crystal is anisotropic and cannot undergo critical transition to a fluid. However, 

critical transition may occur on the crystal surface which is a two dimensional (2D) object.   In 2D 

objects, spatial cooperativity of intermolecular interactions is weaker than in three dimensions.  Therefore 

in two dimensional systems thermal vibrations can destroy crystalline order easier than in the 3D case.  

That transition and the thermal fluctuations from which it originates are of crucial importance for crystal 

growth. The 2D phase transition on a crystal face may be seen as intermixing between the two following 

2D phases.    One of these phases is the fully ordered lattice layer (besides some point defects) occupying 

a part of the crystal face.  This layer is limited by the “step”(Fig.1).   The surface of this layer is a 

“smooth” interface.   The second 2D phase is on the opposite side from the step.  It is nearly empty at the 

crystal – vapor interface (Fig.1) and is occupied by disordered species at the crystal – melt interface.   

Attachments of species to and detachment from the step cause the step meandering over the surface.  The 

weaker intermolecular binding energy along the interface and the higher the system temperature the larger 

is meandering amplitude.   When the (energy)/(temperature) ratio (the numbers in Fig.2) is below a 

critical value, ~ 0.8 in Fig.2,  the step free energy vanishes, and the meandering spreads over the whole 

surface layer.   That means intermixing between the two 2D phases and is called “roughening” transition.  

Above the roughening temperature, the whole interface becomes disordered, or “rough” on molecular 

scale.    

At the smooth interface, new species may be attached to the crystal forever only at the “kinks” at the steps 

(Fig.1) The kink is the end of incomplete molecular row along the step.  Therefore the smooth interface 

grows layer-by-layer, by kink and step propagation.  The layer-by-layer growth mode needs step 

generation.  It is therefore is slow and anisotropic and results in polyhedral crystals limited by the smooth 

facets with some steps separated by atomically flat terraces. Distance between steps is usually 50 to 1000 

lattice spacing, depending on growth conditions and material properties, step free energy in the first place.  

This mode is typical of growth from vapor and solution. On the contrary, the rough interface may acquire 

new species at about any surface site.   Therefore, at the otherwise similar conditions, the growth rate of 

rough interface is higher and nearly isotropic.  This is typical of melt growth resulting in crystal with the 

rounded growth shape coinciding with the isotherm where T =Tm, the melting temperature.  This shape is 

determined by temperature distribution.  The lower is the free interface energy between a crystal and its 

vapor, melt or solution, as compared to the thermal energy (both per molecular site), the stronger the 

fluctuations at the interface, the faster the growth kinetics, the more thorough is statistical “natural 

selection” of species entering the growing crystal forever.  Therefore the interface free energy closely 

correlates not only with the growth mode, but also with typical defects in the grown crystal.    

 



1.2. Interface Geometry and Energetic. 

An ordered interface of the simple cubic lattice is shown in Fig.1.  Each cubicle symbolizes an atom, 

molecule or ion.  Incomplete surface lattice layer is terminated by the step.  Incomplete row along the step 

is terminated by the kink.   In the crystal bulk the “cubic atom” is bound with 6 first closest neighbors and 

increasing number of the second, third, etc. neighbors. The work to rupture one bond is designated as .  

The “dangling bond” associated with one missing neighbor is /2.  In this simplest approximation, 

transfer of an atom adsorbed “on the surface” into vacuum requires the work 1 , the transfer of an atom 

from the “at the step” position into vacuum needs the work 2 , an atom “in the kink” needs 3 , an atom 

“in the step” needs 4 , an atom “in the surface” layer needs 5 , an atom “in the bulk” needs 6 .  

Similar hierarchy of sites exists for other lattices.   For instance, in the close packed FCC lattices, the 

nearest neighbor numbers for the positions on the close packed (111) face, at the close packed step on the 

(111) face, in the kink, in the step, in the surface and in the bulk are 3,5,6,7,9,12, respectively, not far 

from the doubled 1,2,3,4,5,6 sequence for simple cubic packing.   The reason of this proximity is that 

both lattices are three dimensional.   That proximity justifies why the values of the surface energy, 

stacking fault energy and some other binding related quantities vary within only  ~25% when estimated 

making use of either the simple cubic lattice model or a more complex lattice  adequate for the material 

under consideration.  That crude approximation might be sometimes useful to avoid tedious analyses of a 

complex lattice.  The detailed analysis, in addition, requires unknown parameters.  

The kink position is historically also called “half crystal position”. It has special properties because the 

number of all bonds binding the species in the kink is exactly half of the bonds binding the species in the 

crystal bulk.  In that sense, the kink position is identical for any crystallographic orientation of a step on a 

face and of the face relative to the crystal lattice – provided that the species are the lattice unit cells as a 

whole.  In other words, the whole cell is considered as the lattice building block, or “building unit”.  One 

component materials (like Si, Ge, H2, many metals), with the simple cubic (Fig.1), FCC, BCC, HCP, 

diamond packing, allow each atom to be considered as the building unit though unit cell is several times 

larger.   In these cases, each atom may occupy the kink position.  These are well studied Kossel crystals.   

However, even in the simple NaCl crystal, there may be two kinds of kinks – the one occupied by Na
+
 the 

other by Cl
-
.    The same is true for all substances which molecules dissociate while crystal evaporates, 

dissolves or melts, that is, for overwhelming majority of materials.    Majority of molecular crystals, in 

which identical molecules occupy crystallographically not equivalent positions within unit cell also 

belong to the non-Kossel class.   The non-Kossel crystals became subject of analyses only in this century.   

Fortunately, however, the macroscopic phenomenological concepts elaborated for the Kossel crystals are 

of general applicability.  

.                                                                                                             



                                                                                                                                                                                                                                                                                               

Fig.2  

 

Fig.1. Crystal interface with incomplete layer terminated by the step and the incomplete row terminated by the kink.  

Molecules/atoms are symbolized by cubes (a) or irregular polygons (b).   a. Simple cubic packing with one molecule per unit cell 

is called Kossel crystal;  b.  Packing of rectangular unit cells each containing  three different molecules/atoms or identical 

molecules in three not equivalent positions is called non-Kossel crystal. 

Fig.2. Monte Carlo computer simulations of the Kossel crystal interface with two steps at different /2kT ratios indicated near the 

images.  As the ratio decreases, the step meandering amplitude rises.  Ultimately, the steps disappear though the average interface 

decline from the close packed (001) orientation determined by the original two steps remains.  This is transition from the smooth 

interface in the upper left to the rough interface in the lower right corner [9].  

Each atom on the interface has one or more “dangling valence bonds”, i.e. unpaired electrons associated 

with additional energy.   The simplest but rather effective approximation for this energy is  /2.  

Similarly, /2 is the linear step energy per unit site. The free step or surface energy is lower since 

meandering of the step or the interface rises the entropy.  Kink energy is also /2.  Attachment of species 

to or their detachment from the kink does not change number of dangling bonds, thus the interface free 

energy.    Therefore, chemical potential (or free energy, at constant volume) of species in the kink 

position is the chemical potential (or free energy) of the crystal.   For the same reason, minimal work of 

detachment from the kink is just the transition latent heat,  

h = 3 .                                                                                                                                                            

(1) 

This equality allows simply estimate binding energy, , and will be considered in more detail below.   The 

h is evaporation heat if the species are transferred into vapor or the heat of melting if it is transferred to 

the melt.   

The approach described above and eq.(1) will be subject to further justification.  It is good for covalent, 

metallic and van der Waals bonds but it is far not always valid for ionic crystals, in particularly in 

solutions, as discussed below.  The problems with the ionic crystals stems from the long range nature and 

strength of electrostatic Coulomb interaction.   In some cases, remedy comes from alternation of the 

positive and the negative ions in the ionic crystals and liquids.  For instance, because of that alternation, 
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electric field above a surface of ionic crystal in vacuum decreases exponentially.  The characteristic 

distance of that decay is comparable with the lattice spacing.  At the interface with ionic liquid screening 

over Debye radius is added.  Therefore operating with multi-ionic neutral species might make the 

“dangling bond” approach sometimes qualitatively useful.        

Crystal growth is driven by difference between chemical potential of crystallizing species in the mother 

medium (M) – vapor, melt, solution or other solid, M,  and chemical potential of a crystal, S, (S = solid): 

   M – S = (uM + P M – TsM) – (uS + P S – TsS).                                                  (2) 

Here u is the interaction energy between particles within the phase,  is specific volume, s is the entropy, 

all per particle, and P is the pressure.  For sufficiently large phases we may ignore surface pressure and 

stress effects and take the pressures in both phases equal to one another.   At phase equilibrium,  = 0 

for all species that enter both the crystal and the medium.  First, we will consider only one-component 

systems built of one type of species, i.e. a crystal in contact with its own melt or vapor.   Then the 

equilibrium condition  = 0 may be reorganized as follows:    

uS – uM + P( S - M) = - T(sM – sS) = - h.                                                                     (3) 

Eq. (3) is equality of the heat function difference on the left to the transition heat h = T(sM –sS) on the 

right.   The transitions entropy, s = sM – sS > 0, since crystal is more ordered and thus posses lower 

entropy than melt or vapor.     

For melting and solidification, the s  (1 to 4)k = (1 to 4). 1.38.10
-16

 erg/K for elements, k being the 

Boltzman constant.   For metals, typically s < 2k, for complex oxides and organic materials s  (2 to 

7)k.  That entropy increase naturally comes from increasing of the number of configurations in melt due 

to the covalent bond anisotropy for elements in the middle of the periodic table, due to the number of 

different species in complex oxides, and due to orientation variability in melt of these asymmetric oxides 

species and organic molecules.   In crystals and melts,   (1 to 3).10
-23

 cm
3
, so that at the atmospheric 

pressure, P = 10
6
erg/cm

3
, P  = P( M - S) <  0.1.(1 to 3).10

-17
erg  2.10

-18
erg where the factor 0.1 

stands for typical specific volume change at solidification.   For comparison, the fusion enthalpy is much 

larger: h = 8.3.10
-13

erg for Si (melting temperature Tm =1678K, s = 3.6k), h = 2.1.10
-13

erg for Au (Tm 

= 1337K, s = 1.13), and h = 2.3.10
-13

erg for Fe (Tm = 1811K, s = 0.91k).   Thus, the 

(pressure)x(volume) contribution to the heat function difference on the left hand side of eq.(3) is 

negligible.   Consequently, the fusion enthalpy is just difference between interaction energies within the 

solid and within the liquid rather than the free energies, leaving alone vibration and electronic 

components.     

In case of sublimation, P   kT  1.4.10
-13

erg at T = 1000K, while h >  10
-12

erg.  For example, for Si, 

h  7.7.10
-12

erg.  Since there is practically no interaction in vapor, the sublimation enthalpy equals the 

minimal work required to detach an atom or molecule from the kink position justifying eq.(1) for the bond 

energy in the simple cubic lattice.  

Evidently, detachment of species from the crystal bulk or from positions “in the bulk”, “in the surface”, or 

“in the step” exceeds h, since more bonds are to be ruptured.   In these cases, vacancies in the bulk, 

surface layer, or the step are formed and increase the crystal energy.  Similarly, detachment of atoms 



adsorbed on a face or a step requires less energy.  Only the detachment from the kink may be related to 

the measured latent heat.   

The approach described above is good for the smooth interfaces where the kink and the step are the major 

element of the interface geometry.  However, within the really diffuse interface (Sec.4, Fig.8), all atoms 

are disordered so that kinks and steps do not exist.  This is a case of simple metals in contact with their 

own melt.  Nevertheless, the localized interface approach to this situation like the rough interface in Fig.2 

also works and allows for estimates of the interfacial free energy.    

The difference between the interaction energies in crystal and in solutions may be far away from the 

dissolution enthalpy.  In this case eq.(1) is invalid.  While melting and sublimation always requiring heat 

supply, dissolution of numerous crystals is accompanied by heating, that is, dissolution generates heat, i.e. 

is exothermic.  For instance, dissolution of Na2SO4 in water generates 0.28kcal/mol (= 1.9.10
-14

erg per 

molecule), while dissolution of Na2SO4.10H2O requires 18.7kcal/mol.  Dissolution of Mn(NO3)2 

generates h = 12.7kcal/mol while dissolution of  Mn(NO3)2.7H2O requires h = –  6.1kcal/mol.  

Dissolution of MgI2, K2CO3, CaBr2 generates 50.2, 6.9, 26.3kcal/mol, respectively [3].   The less water 

enters the structures of MgSO4 and Na2CO3 the more heat is generated at dissolution of these salts.  

Would dissolution be just similar to melting or evaporation it should always be accompanied by increase 

of the system entropy and requires some heat.   Heat generation at dissolution suggests that hydration or 

solvation of species moved from crystal to solution decrease the system energy and generate heat that 

overwhelms the effect of the entropy increase associated with dissolution.  That exothermic effect is 

naturally the weaker the more water molecules enter the crystal structure so that each ion is hydrated 

already in the solid and not much is left for hydration at dissolution.  Naturally, the crystals dissolving 

exothermically show retrograde solubility i.e. decrease of the equilibrium concentration with increasing 

temperature.  Fig.3 presents schematic chemical potential versus temperature map for melting (a), regular 

(b) and retrograde (c) solubility.   To capture only the qualitative trend, these simplified plots assume 

negligible dependence of interaction energy and entropy on temperature.   Namely, the energies at T = 0 

are assumed to be the same as at the phase transition temperature and the Nernst theorem (zero entropy at 

T = 0) is ignored, since the slope of the (T) lines is constant.  

Eqs.(1) – (3) allow to estimate the dangling bond energy from the difference between interaction energies 

of species in contacting phases. The simplest way from this estimate to the interfacial energy is for a 

crystal – vapor interface, since there is only negligible interaction in vapor.  Then the interface energy is 

just 

 
2

2/ a                                                                                                                               (4) 

where 
2

a is the area per carrier of the dangling bond.  However, this estimate presumes that the interface 

structure is the same as if obtained by cutting the crystal lattice with a plane parallel to the interface and 

then removing half of the crystal.  However, that removal forces the interface species to rearrange, i.e. 

undergo reconstruction and relaxation.    

Reconstruction on the as-cut Si (100) face (Fig. 4a) leads to mutual saturation of two dangling bonds, 

that is, to pairing of the two unpaired electrons, belonging to neighboring atoms  (Fig.4b).  That 
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Fig.3.   Cross-section between the lines presenting chemical potential  = (T) dependence of the crystal-building species, in 

solid (S) and in liquid (L) provides the equilibrium temperature, T.   The crystal - melt system is shown in (a). The system of a 

crystal and solution containing different concentrations, C1,C2, of the crystal species are shown in (b), and (c).  The slope 

P
Ts )/( is the entropy of these species, per particle. The energies and entropies in the phases, s , , respectively, are 

assumed to be independent of temperature. b.  The crystal – solution system with regular solubility Ce(T) increasing together with 

temperature: the solute-solvent interaction 
L

is independent of concentration but the solute entropy in solution naturally 

decreases with the solute concentration ( )(ln TCkT
L

); c. retrograde solubility:  entropy is still lower for larger 

concentration, as in c, but attraction of the solute species to the solvent is stronger than attraction to the neighbors in the crystal.   

reconstruction leads to appearance of the <011> dimer rows, surface stress and includes also some 

distortion of the two deeper (001) layers.  This structure is called Si(001)2x1.  The dangling bond 

saturation, i.e. appearance of the regular (though slightly distorted) covalent electronic bond, resumes the 

energy of ~ 2.02eV/dimer [10,11], i.e. ~10
3
erg/cm

2
.  For comparison, the free dangling bond energy in the 

diamond lattice may be taken to be about ¼ of the sublimation heat, h = 4.8eV/atom = 111kcal/mol = 

465kJ/mol.   Related to the unit area per atom a
2
/2 =14.7.10

-16
cm

2
 that gives an estimate of the 

unreconstructed crystal – vapor interface of 2,600erg/cm
2
.  This rough estimate for the reconstructed 

interface gives therefore  = 1,600erg/cm
2
.   Detailed computations result in the range of 1,490 – 1,623 

erg/cm
2
. Thus reconstruction essentially (by ~40%) reduces the “cutting-and-separation” work.   

Reconstruction also happens on metal – vacuum interface, though with a bit lower correction effect. 

Different reconstruction on the Ga and As sides of the (111)GaAs interfaces is an example of how the 

simple dividing of a ruptured bond energy by two to obtain the dangling bond energy is a crude  



approximation.  

 

Fig.4.  The Si(100) face: a. just as it is within the ideal crystal lattice; b. after reconstruction, pairing Si atoms along 

the <110> directions and establishing interatomic distance  of 2.23A instead of 3.84A in the bulk lattice.   

Reconstruction is often eliminated by adsorption of species saturating incomplete orbital.  For example, 

the Si(111)7x7 is transformed to unreconstructed Si(111)1x1 structure in presence of hydrogen – each H 

atom saturates one sp
3
 dangling bond of one Si atom on the Si (111) surface.   For the similar saturation 

reason reconstruction is typically missing on crystal interface with a condensed phase. 

Surface relaxation is a change, typically decrease, of the distance between atomic planes closest to the 

crystal – vacuum interface.  It occurs to compensate lack of attraction from the missing half-space.   

Relaxation is the strongest (up to 3% of the lattice spacing) for the “open”, least packed faces on metals, 

like (100),(111)BCC, (110),(311)FCC, [12] but has little effect on the interfacial energy.   The relaxation 

is practically negligible on ionic and weak on covalent crystals.   

The dangling bond estimate of the surface energy, eq.(4), is of course crude and does not provide the free 

energy.  Results of experimental measurements of the latter are discussed in the next section.  

1.3. Determining Free Surface Energy. 

The lattice geometry and thermodynamic analysis highlighted above allows an estimate of the bond 

energy and thus the energy per atomic or molecular site, that is, the interface energy.   However, this is 



not yet the free energy of an interface or a step that really matters in crystallization, ripening, ageing and 

other materials science phenomena.  The free interface energy is lower than the energy only by percents if 

/2kT >> 1.  This inequality works at strong binding along the interface and at low temperatures.  

However, the free energy may be essentially lower than the energy in the opposite case, when binding 

within the interface is comparable or lower than the thermal energy.  Therefore, more precise data, 

experimental in the first place, are desirable [4,13].   

The free energy of interface (or a step) is the equilibrium property defined as the minimal work required 

to create a unit area of the interface (or unit length of a step).  For instance, theoretically, the interface 

between phases A and B may be created by cutting both A and B and then connecting A with B and B 

with A.  The net work AA + BB is spent to separate the homogeneous phases A and B into two parts each.  

Then both parts A are brought into contact with both parts B creating two interfaces AB.   That 

connection brings back the work 2 AB.  Surface reconstruction considered in the previous section is an 

example for the crystal – vacuum interface.  The difference divided by the surface area is 2 AB, the 

doubled interfacial energy between A and B.   Alternatively, new AB interface is created when the phase 

B is nucleated or grows within the phase A or vice versa.  Therefore major data on the free  interfacial 

energies have been experimentally obtained from the rate of crystal nucleation [4].  Grain boundary 

groove emerging on the crystal – melt interface induces a cusp like groove which shape is also used to 

evaluate free surface energy. The interface energy also drives Ostwald ripening minimizing total interface 

in the ensemble of small particles, several m in diameter or less.  Kinetics of that ripening is another 

source of the free surface energy.   Analysis of the equilibrium lens-like shape of a liquid droplet on a 

crystal is also a working experimental technique.   Numerous data on metals are summarized in [13].   

Unfortunately, free surface energy averaged over crystallographic orientation of different faces emerged 

in majority of experiments.   

 

Since the Ostwald ripening was mentioned, it is worth to note that ripening occurs sometimes in saturated 

solutions in ensembles of crystals that have 10-100 m to mm size in effective diameter.   This is not the 

Ostwald ripening because in this case the driving force for ripening due to the interface free energy and 

surface curvature is too small.   Instead, growth of the larger crystallites at the expense of the smaller in 

this case comes from asymmetry between growth and dissolution of  bigger and smaller crystals due to 

the variation of temperature [14].   

 

Melts. Fig.3  [15]  is an example of proportionality between the interfacial free energy found in 

experiments with crystal nucleation in melts and the latent heat of crystallization.   The molar surface free 

energy means the free energy of the surface built of Avogadro number (6.02.10
23

) of sites occupying the 

area of 
3/2
each.   The empirical relationship between the melting heat and the solid-melt interface 

energy is: 

3/2
)5.0  to3.0( h

SL
.                                                                                                  (5) 
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Fig.5.  Proportionality between crystal – melt interfacial free energy and the latent heat of crystallization [15] 

Except for the numerical factor (0.3 to 0.5), this estimate is consistent with the expectation that each atom 

on the interface occupies an area of about 1/6 of the interface of the “cubic” atom which surface is 
3/2
(the empirical coefficient is 1/6.6).   The numerical factor, at least partly, takes care of the difference 

between the just dangling bond energy per a single atomic site, eq.(1), as determined form te difference 

between interaction energies in the crystal and in the melt, eq.(3), and the really measured free energy of 

the rough interface.  Indeed, the roughening transition means essential increase of the interface entropy.  

That entropy rise lowers the value of the free energy as compared with the energy per unit site.   

Another empirical relationship is related to the typical 5-15% melting/solidification density change and is 

useful since the melt – vapor interface free energy, 
LV

 is easier and more reliable to measure than the 

crystal – vapor interface free energy, 
SV

[16]: 

LVLSLVSLSV

3/23/2
)/(13.1)/(13.1 .                                                                 (6) 

Here 
LS

, are the solid and melt densities.  

Surface melting. Since 
SLLVSV

, wetting of the “dry” crystal – vapor interface by the melt may 

occur near the melting temperature, Tm.   For example, high energy electron diffraction (RHEED) from 

the Pb(110) face nearly disappears at 50K below the Pb melting point, Tm = 600K suggesting that a thin 

disordered quasiliquid surface layer exists on the crystal – vacuum surface [17].  As the sample 

temperature approaches the melting point, the thin liquid film is transformed into the bulk melt.  The 



“surface melting” occurs not only on the metals surfaces exposed to vacuum but also on -

methylnaphtalene growing from its vapor and on biphenyl in contact with glass [18].   Experimental and 

theoretical work on this phenomenon is reviewed in [19].  Thickness of melt film covering the “sweating” 

crystal surface was measured by Rutherford backscattering to increase from several to tens of 

atomic/molecular layers and further to became the bulk melt as T  Tm.   The surface melting should be 

easier if the crystal – vapor interface is smooth while the crystal – melt interface is rough –  because the 

roughening transition is associated with the decrease of the free surface energy.   Under that conditions 

the vapor – solid growth is replaced by the vapor – liquid – solid growth even without foreign component 

as is the case in the VLS growth mode of nanowires.  However, study of the surface melting requires 

extremely pure material to avoid appearance of liquid eutectics on the crystal interface.    

The columns of the Table 1 below [18] list atomic number of the metal, Z, its Tm, latent heat of fusion per 

mol, H, the measured SV, SL, LV surface free energies and the difference  

)(
LVSLSV

                                                                                               (7) 

between the solid – vapor free energy of the dry interface and the sum of the solid – liquid plus liquid – 

vapor (or another medium) free surface energy of the wetted interface.   Thus  > 0 predicts wetting while 

the negative sign means that the dry interface has lower free energy than the wetted one.  The Table 1 

compiles the experimental free interfacial energies.  Another tables may be found in [4,13] and other 

numerous sources. 

Solutions.  Like with melts, major experimental data on the free surface energy between crystal and 

solution have been obtained from nucleation experiments.  However, in experiments with solutions 

macroscopic samples have been used rather than the 100 m droplets in melts.  Thus in solutions it is 

more difficult to eliminate heterogeneous nucleation leading to data scattering and to some undervalued 

surface free energies.  Purity is always a big issue in nucleation measurements.  As it was  mentioned 

above, numerous substances dissolve exothermically, i.e. behave opposite to what one may expect from 

analogy with melting.   However, the substances showing “regular” endothermic dissolution show, 

despite of a big scattering, natural correlation between the free surface energy and solubility.   Namely, 

the crystal – aqueous solution free energy linearly decreases with logarithm of solubility [20]: 

5.34)/(ln3.18)/(
2

lmolCcmerg
e

 .                                                                  (8) 

or, if calculated per unit surface site of the area 
2

a [35   35.  J.Christoffersen, E.Rostrup, 

M.R.Christoffersen, J.Cryst. Growth, 113,599-605(1991)]: 

82.2)/(ln272.0/
32

mmolCkTa
e

.                                                                     (9)  
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The dependences eq. (8) and (9) are qualitatively clear:  the closer the interaction between the species 

building the crystal to the interaction of these species with the solvent the smaller is the difference 

between the crystal and solution, the lower the interfacial energy.   On the opposite, sparingly soluble 

salts show higher interfacial energies in these “foreign” solvents. 

2. DRIVING FORCE.   

The growth rate of an interface, of a step, or of a kink typically increases together with the driving force 

for crystallization.  In solution or vapor growth, the latter is the excess of the actual solution concentration 

or vapor pressure over the equilibrium value.   In melt growth, growth is driven by undercooling T = Tm 

– T below the melting point.   The most general expression for the driving force, is the excess, , of 

chemical potential of the crystallizing species in the mother medium over the potential in the crystal.  This 

general form is especially needed when several chemical components are involved.  The way the growth 

rate behaves when the driving force increases, is determined by density of the srystallizing species in the 

medium, by mechanisms controlling incorporation of species into the lattice at the crystal interface, by the 

supply of these species to the interface, by removal of the reaction products, and by removal or supply of 

the latent heat of crystallization.   The latter problems of mass and heat transport are subject to special 

analyses, last decades by computer modeling [21, 22]. 

Many melts contain either many types of different species, like high Z metals, or the species with 

tendency to make chains and complexes, like P, Sb, S, or large organic molecules.  In these melts, crystal 

growth rate near Tm first increases with the increase of undercooling and then decreases so that the 

ultimately liquid disorder may be frozen and a glass formed.  The glass is formed at large driving force 

which, nevertheless remains finite at maximal possible undercooling.  Specifically, at the glass formation 

temperature, the entropy ratio (sglass – scrystal)/(sliquid melt – scrystal) = 0.38 for 80 typical glass forming systems 

[23].   The liquid disorder freezes because viscosity of melt becomes high enough to prevent formation of 

a crystal rather than a glass.  The reason is twofold.   One is that mobility of the crystallizing species, for 

instance large organic molecules, becomes low at low temperatures. The second is that the unit cell of a 

multicomponent non-Kossel crystal to be formed is large and complicated.  That complexity requires long 

time for all the species, their clusters included, to arrive and to be accommodated at the kink positions.   

In what follows only the crystal growth kinetics at moderate deviation from equilibrium will be 

considered.   

The difference  between chemical potentials of the mother medium and the crystal is given in the 

simplest one component system by eq.(2).  Dimensionless driving force is often defined as /kT.   In 

melt or vapor,  

 = s T = h T/T,                                                                                                   (10) 

where h is the corresponding latent heat and T is the equilibrium temperature.   In ideal vapor or 

solution, 

 = ln[(P – Pe)/Pe],     = ln[(C – Ce)/Ce],                                                                 (11) 



where Pe and Ce are equilibrium vapor pressure and solubility, respectively.  Typical driving force /kT 

in use to achieve practically employed growth rates are:  10
-10

 to 10
-12

 for quantum crystallization of 
4
He, 

10
-2

 – 10
-5

 for conventional melt growth, 1 - 5 for sublimation, 20 – 40 for chemical vapor deposition 

(CVD).     

The reciprocal supersaturation, Ce/(C – Ce), or, in general, 1/[ exp( /kT) – 1] (see below) provides an 

average measure, how many attachments and detachment of species occur at a lattice site before that site 

is occupied forever in the process of crystal growth.  In other words, the reciprocal supersaturation is a 

measure of how careful is the process on “natural selection” of species.   This selection determines 

concentration of impurities and point defects in the crystal.    For instance, at the rough Si – melt 

interface, a lattice site is filled forever only after 10
4
 – 10

5
 attempts.   On the other hand, a lattice site on a 

smooth (111) facet is filled about 100 times less carefully – because the smooth face grows by 100 times 

faster propagation of steps.  These steps are rare on the growing face and must propagate much faster for 

the face to keep up with the rough portion of the interface.  The larger force to drive the steps to move 

faster is reached since the facet is left behind of the rough interface.  Then the facet turns out to be in the 

region of deeper undercooling which ultimately pushes the steps to grow faster.  Due to the higher driving 

force ans thus fast growth, for example, concentration of Te impurities trapped by the InSb (111) facet 

may be 10 times larger than the concentration trapped by the rough interface – at the same macroscopic 

growth rate normal to these interfaces.  Conventional solution growth of KH2PO4 proceeds at the 

supersaturation of several percent.  Therefore the selection includes only 30-50 trials and errors before 

filing a lattice site (confer eq.(22) below).    

Besides the driving force, the growth rate is proportional to density of the crystallizing species in the 

mother liquor or gas.   That is why high quality thin films are grown from vapor or by CVD at rates of 

several Å/s  while melt growth allows the rates of 1 -100 m/s to be employed to grow meter - scale 

perfect single crystals of Si within a day.    

As it was highlighted in Sec 1, a smooth crystal face grows layer-by-layer, via propagation of steps, while 

rough interface allows attachment of species practically at any place, i.e. it propagates along the normal to 

itself at any point and is called therefore sometimes normal growth mode.   The layer-by layer growth will 

be considered in Sec.3, the normal growth is discussed in Sec.4. 

3.    LAYER-BY-LAYER GROWTH.   

New species may attached to the crystal forever only at the kinks along the steps.  Therefore a smooth 

face, below the roughening transition, grows by steps propagation along that face.   

On a clean face, the steps are typically one lattice spacing high though, in general, the steps have 

tendency to bunch and may form macrosteps micrometer scale high.  If the step height is h and the 

average distance between steps is , the measurable rate V of the face displacement normal to itself is 

stst
p

h
V vv                                                                                                            (12) 



The steps may be parallel to one another and form a staircase inclined and propagating in the same 

direction.  In this case, typical of low supersaturations /kT  10
-3

 – 10
-1

,  the ratio h/  = p is the slope 

of the staircase, p 10
-2

 to 10
-3

. 

 

Fig.6.                                                                                 Fig.7. 

Fig. 6.  Typical AFM image of the layer-by-layer growth mode on the (111) face of the FCC crystal of ferritin by propagation of 

steps with high kink density (a). Growth steps are marked as 2 to 6.  Ferritin is the iron storage protein.  Its spherical molecules 

are 13nm in diameter and have molecular weight M = 450,000 Da.  The steps are separated by smooth terraces.  Each step 

meanders via creation of numerous kinks.  Kink density distribution is shown in (b)[24]. 

Fig.7.  Steps with low kink density on orthorhombic (left) and monoclinic (right) polymorph modifications of the protein 

lysozyme.  Each molecule is an ellipsoid with effective diameter of 2nm,  M = 14,300Da.  The left image shows single kink 

which depth is 5.6nm, equal to the distance between molecular planes seen as vertical stripes.  Kink density on the steps seen on 

the monoclinic crystal on the right is 2.10-3 1/nm, distance between kinks is 490nm [courtesy of L.N.Rashkovich]  

That staircase geometry is usually generated by screw dislocation or reentrant angle at the foothill of a 

macrostep.  Alternatively, steps may be generated by 2D nucleation on random or preferential points of 

the smooth terraces between the steps.  In that case h/p is an average terrace width.    

If n  (1/cm) is density of both the positive and negative kinks along the step (reciprocal average distance 

between kinks) and a is the kink depth then the step velocity 



k
vv an

st
                                                                                                                          (13) 

Thus the rate of the layer-by-layer growth of a crystal face is controlled by the rates of step and kink 

generation and propagation.   The kink propagation rate is determined by attachment of new species to the 

lattice – the core elemental process of crystal growth.    

 

3.1  Kink Propagation: Activation Complex Concept. 

 Vapor, MBE, CVD growth.  Atoms of simple materials, like metals, Si, Ge, attach to the kink site 

without overcoming a potential barrier because pairing of electrons into complete orbital occurs 

immediately.   Therefore attachment of an atom occurs just as soon as it reaches the kink site.  Therefore 

the step propagation rate is limited just by supply of these atoms and the kink density, as it is clear from 

eq.(13).  The material supply occurs mainly via surface diffusion over the smooth terraces between steps.  

Indeed, adsorption energy on the terraces may reach 0.5 h (for instance, 2.4eV for Si) so that number 

density of species in the adsorption layer may exceed that in vapor by orders of magnitude.  Potential 

barrier for surface diffusion on the crystal – vapor interface for atoms or organic molecules is typically 

0.2 to 0.5 of the adsorption energy (1.1eV for Si).   Flux of atoms to a kink from adsorption layer is 

proportional to the product (adsorption layer density)x(surface diffusivity).   For the reasons given above 

on the adsorption energy and diffusivity barrier, this product strongly exceeds the product (vapor 

density)x(thermal velocity of atoms)x(kink site area).  The latter parameter is the flux of atoms to the kink 

directly from the vapor.  This inequality justifies growth from the adsorption layer.  Note that this 

statement is typically wrong for the growth from melt and solutions where the crystallizing species mostly 

arrive to the kink from the bulk liquid.  Surface diffusion is also essential component of material supply 

and thus the growth rate of complex semiconductors, like II-VI and III-V compounds from the gas phase.  

However, for instance, even in the growth of GaAs by molecular beam epitaxy (MBE) the molecules like 

As2, As4, or their surface complexes with Ga are present.  Similarly, Te2 complexes participate in CdTe 

MBE growth.   Decomposition of those complexes at kink sites requires formation of an atomic 

configuration intermediate between that required by surface and that by the kink.  Namely, atom(s) not 

relevant for the specific lattice site at the kink should be detached.  For instance, there are no As2 species 

in the GaAs lattice.   That intermediate “activated complex” has deformed interatomic bonds and thus 

higher energy than both the initial and final states.    Therefore the complex is at the top of the potential 

barrier for reaction.   Numerous different complexes exist on the growing surface and in the gaseous 

phase during the CVD/MOCVD growth.  

 Solution and melt .   The just described classical Eyring’s activated complex concept is applicable also 

to condensed phases.  Let us consider, for example, a kink on a step in a molecular solution.  The 

activated complex may be seen as built of the solvent and solute molecules in one of configurations 

intermediate between the two following stable configurations.  One is a solvated molecule of the 

crystallizing solute in the solution bulk.  The other is the “not activated” solvated kink existing when the 

next solute molecule is far away from that kink.   The activated complex is the configuration 

corresponding to the saddle point on the surface presenting dependence of the complex energy in the 

reaction coordinates – interatomic distances or their combinations.  On one side from this saddle point is 

the valley of the solution states of the crystallizing molecule, on the other – the valley of its crystalline 



states.   On the border, in the saddle point itself, the energy of the activated complex may be designated as 

E.   It may be considered as belonging to either side, that is to either the nearly pure solution ensemble of 

numerous i-th solution states with the energies uiM or to the crystal ensemble with the energies uiS .  Let us 

denote the probability for the complex to exist as  

kT

u

i

i

Aep                                                                                                                             (14) 

where we omitted the indices M and S at ui since each may be used in the following calculation of the 

unknown constant A.   This constant must satisfy the normalization condition: 

1

i

kT

u i

Ae ,                                                                                                                                                     

(15) 

where the summation takes care of all either solution or crystalline states.  The entropy of the crystallizing 

species (per particle) is: 
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                     (16) 

or 

.       ,ln kT

Tsu

eAuAkTTs                                                                                         (17) 

In eq.(16), the brackets < > mean usual averaging over the ensemble of the i-th states.  

Thus we came to the famous thermodynamic relationship: 

kT

uTsu

i

i

ep .                                                                                                                          (18) 

For the activated complex, ui = E.    The difference u – Ts is just the free energy per molecule, either in 

the medium M (for instance, solution) or in the crystal.  In this outline, for simplicity, we assumed the 

system volume to be constant and thus dropped the term P i in energy.  At constant pressure, the 

normalized probability for the activated complex is expressed via chemical potential, , so that the 

probability to have a crystallizing species sitting in the saddle point and ready to go to both valleys is  

kT

E

ep  .                                                                                                                        (19) 

Eq. (19) is another classical expression )/exp( kTA for normalization constant in the Gibbs 

distribution at the constant pressure.    

A molecule in the activated complex participates in many vibration modes.  We designate by  the 

vibration frequency along the coordinate of crystallization reaction.   If electronic transition is crucial,   



kT/h, where h = 6.6.10
-27

erg.s is the Plank’s constant.  Then, at T = 300K, one may expect   6.10
-12

 1/s.   

Alternatively, that frequency may be associated with molecular libration or vibration of the molecule as a 

whole.  The uncertainty with the exact mechanism determining the vibration frequency along the reaction 

coordinate is typical also in diffusion, chemical reactions.  Therefore we may only assume   10
13

 – 10
12

 

1/s.   

The rate of kink propagation along the step, over the atomic or molecular size a in the lattice, is the 

difference between the frequencies of attachment, w+, and detachment, w_, both in 1/s, times a: 

kT
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.  (20) 

Here we took into account that at equilibrium the solution concentration C equals its saturation value Ce: 

MeS
uCkT ln                                                                                                         (21) 

and the kink kinetic coefficient, k, was introduced.  Together with the kink density, the k controls the 

measurable kinetic coefficient of a step, eq.(30) below.  It is useful to note here the relationships between 

the attachment and detachment fluxes and the measurable supersaturation /kT: 

aCw
C

CC
e
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w
ek

e

ekT /flux     exchange  theand    .                                (22) 

The activation barrier E-uM is the same for both the attachment and detachment of molecules at the kink 

and, in solutions, may be experimentally estimated from temperature dependence of the step and face 

growth rate.  In the vapor growth and CVD the temperature dependence of the incorporation and the 

growth rate is overlapped with the temperature dependences of the adsorption layer density and surface 

diffusivity.   In solutions, the activation barrier originates from solvation heat and orientation entropy and 

should not be confused with the work needed to detach a particle from the kink.  The latter includes both 

the activation barrier and the excess  of chemical potential of the medium over the crystal.  The 

activation barrier is, evidently, the same for growth and decrystallization – dissolution, evaporation, 

melting, etching.  

The driving force, C – Ce, should, of course, be taken in the immediate vicinity of the kink, over such a 

small distance that the bulk (or surface) diffusion over that distance is fast as compared with the 

incorporation rate following from eq.(20).   Therefore the local supersaturation at steps and kinks is 

measured only in the purely kinetic growth mode, when material supply in a (stirred) solution or gas 

phase is much faster that incorporation processes at the growing interface.  The practical signature of the 

kinetic mode is independence of the growth rate on the material supply rate, for instance, on solution flow 

in the close vicinity of the growing crystal interface.  In other words, the reservoir where solution 

concentration is known should be at such a distance L from the growing interface that the typical 

diffusion rate D/L highly exceeds the incorporation rate, i.e.  D/L >> st.   

Let us now consider growth of ionic crystal from electrolyte solution or generally, of the non-Kossel 

crystal.   The same approach is used for crystallization in which chemical reactions are involved, e.g. in 

CVD growth.  As it was mentioned in Fig1. the unit cell of a non-Kossel crystal includes either 



chemically different species, like anions and cations, or identical molecules (atoms) occupying, however, 

not equivalent positions.   For simplicity, we assume that there are only two kinds of species or two 

different positions of identical species, A and B, in the unit cell.  The crystal cannot grow leaving unfilled 

sites designated to each of the species.  Similarly, it cannot grow leaving behind positions unfilled with 

identical species.  In both cases, the energy increase is too high.  Thus the actual “growth unit” is the pair 

AB and the driving force replacing C – Ce in eq.(20) and others is KCC
BA

 where the solubility or the 

reaction equilibrium product kT

uu BAAB

eK .    Here 
AB

is the chemical potential of the AB units in the 

crystal.   The chemical potentials of A and B in solution (or gas) are similar to eq.(21) with the actual 

concentrations 
BA

CC  ,  replacing C .  The energies uA and uB have the same meaning of the interaction of 

the solvent with A and B, respectively.    The species taking different positions in the unit cell of a crystal 

may be identical in solution, as, for instance, protein molecules.   In this case, the kink rate  

))((~v
22

eee
CCCCCC ,                                                                                (23) 

rather than 
e

CC entering eq.(20) . 

In general, kink propagation rate along the step on the non-Kossel crystal is controlled by four 

frequencies, 
BABA

wwww ,,, [25]: 

BABA

BABA
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k
v  .                                                                                   (24) 

In this equality, a stands for the lattice spacing AB along the step.    The nominator in eq.(24) is  

KCC
BA

, as it should be, if the frequencies w  are expressed via chemical potentials and interaction 

energies are similar to eqs.(18)-(20).   The activation barrier entering the kink kinetic coefficient, eq.(20), 

in this case is 
BA

uuE .   However,  eq.(24) is fundamentally different from eq. (20) since it predicts 

non linear kink rate on the driving force.    

Indeed, the basic property of the kink velocity eq.(20), is its linear dependence on the driving force.  This 

linearity follows from statistical independence of attachments and detachments.  That independence exists 

also on the disordered rough interface where even closely located sites behave independently from one 

another since thermal fluctuations and liquid like rearrangements of the species destroy correlations 

between the subsequent events.  In other words, memory on the past is missing because thermal 

fluctuations are strong.   This is not the case, for instance, in nucleation.    Here, average detachment 

frequency of a particle from a small cluster does depend on the cluster size due to the Gibbs-Thomson 

law.  The cluster size is the result of the previous attachments and detachments.  That cooperative 

memory leads to nucleation barrier, that is, to strongly non-linear dependence of nucleation rate on the 

driving force, the supersaturation or undercooling. Memory of the previous stage exists also in growth on 

the non-Kossel crystal surface: the irreversible attachments of A and B must follow one another because, 

again, violation of this sequence would be too expensive in energy.      



If a non-Kossel crystal grows from stoichiometric solution, 
BA

CC , the kink rate may be reduced to 

eq.(20), as if the crystal would grow from the AB molecules, with an effective potential barrier 

BA
uuE .   However, in a non-stoichiometric solution, the kink rate is not linear function of the 

driving force, exp( /kT) – 1.   This non linearity comes from denominator in the eq. (24) where 

attachment frequencies depend on concentrations of the species A and B.   The reason is the 

predetermined, i.e. strongly correlated ABAB… sequence of species in the lattice.    Physical reason for 

that non linearity may be understood as follows.   If there is a deficit of, say, species B in solution as 

compared to A, then incorporation of the species B should be the limiting stage of kink propagation.  If A 

is in deficit, the kink rate is determined by incorporation of A.   These rates are different even at the same 

driving force KCC
BA

.   Therefore linearity with the driving force may be expected only when the 

product 
BA

CC  in solution is being changed keeping relative portions of A and B constant: 

./ constCC
BA

  

3.2.  Step Propagation  

Irreversible attachments of new species to the lattice occur at the kinks on a step.  Therefore the step 

propagation rate is increasing with increasing the kink density unless that density is so high that its further 

increase does not influence the step rate any more.  Most often, the kink density is high, so that the 

distance between neighboring kinks is only several lattice spacing long.  Morphologically, high kink 

density leads to practical independence of the step rate on its crystallographic orientation within the the 

face on which the step grow.  The isotropic step velocity results in circular shape of a closed step loop.  

That steps 1-6 are seen in Fig.6.  Let us now consider an opposite case of a “singular” step, on which the 

average distance between kinks is tens of lattice spacing long (Fig.7).  Typically, such singular steps have 

simple crystallographic Miller indices since they are oriented along the closest packed directions in the 

crystal lattice.  If a step is essentially declined from this singular orientation it has much more kinks for 

just geometrical reason: the crystal lattice is descrete.  Therefore, at the same driving force, the declined 

step will grow much faster than the singular one.  What will it be the final shape of a step that form a 

closed loop?  Evidently, the step portions with high kink density grow faster and wedge out leaving on the 

final steady state growth shape only the slowest orientations.  The singularly oriented steps are usually the 

slowest, so that the steady state loop will take polygonal shape of which edges are these singular 

orientations.  Fig.7 shows a part of that edges.  Thus the step morphology is a tool to penetrate into 

molecular growth processes.   

At and away from equilibrium, kinks are produced on a step by random thermal detachments and 

attachments of species.  The kinks may also mutually annihilate either elongating or shrinking the 

segments of the molecular row they terminate.   Rates of the kink birth and annihilation may therefore 

depend on driving force.  In what follows we first consider the most often case when the kink density is 

high and is controlled by equilibrium thermal fluctuation.  The equilibrium kink concentration is 

determined by its energy.  This kink energy is the work required to create a new kink, similar to the work 

to create a new surface.  In a simple Kossel cubic lattice, the kink energy is /2, that is the energy of one 

“dangling” bond.  On a long step of, say, <100> orientation on the (001) face, number of species forming 

the step edge equals the number of contacts between these species – if the end effects are ignored.    

Therefore the kink at each connection (contact) between the neighbors may appear independently from 



the kinks at the other connections – in the sense that appearance of one kink does not require appearance 

of another and thus does not require additional change in energy.  The simplest way to feel this 

independence is to make a kink as follows.  Let is consider a horizontal <100> step limiting a semi-

infinite lattice layer below it.   To create a new kink, let us cut the layer by the normal to the average step 

orientation along the connection where the new kink is supposed to be.  Then let us shift half of the layer 

located on, say, the left hand side of from the cut up in the direction normal to the step by one lattice 

spacing. That shift creates one kink and increases the system energy by /2.   All the step configurations 

on the both the left and right sides of the cut remain intact.  That means lack of cooperative interaction 

along the step.  Therefore the kinks are independent from one another and thus must be randomly 

distributed along the step.  The kinks form the 1D gas. Note that a similar operation of creating one single 

kink on a surface independently of the others is impossible.  Indeed, on a square lattice of atoms, the 

number of contacts between atoms where the kinks may be is twice the number of atoms. That 

impossibility to create on kink independently of the others demonstrates cooperative interaction on that 

square, the 2D object.   

Kinks on a straight step may have two opposite signs, “+” and “-“  that are “looking” to the opposite 

directions along the step.  Let us designate the number densities of these kinks, per unit length,   by n+ and 

n-.  Density of the kink free sites is n0.  Total density of the of contacts per unit step length is an /1 , so 

that  

nnnn
0

                                                                                                             (25) 

Then the free step energy per unit length is  

!!!/!ln ))(2/(
0
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 .                                           (26) 

Here SU  and are the step energy and entropy, per unit length, and we ignore possibility of the kinks 

having the double, triple, etc depth.   For simplicity, we again consider the step which, on average, keeps 

the <100> orientation on the (001) face, that is, nnn .  At equilibrium, kinks must be born and 

disappear keeping the step free energy at minimum: 0/ n
st

. That minimization under the 

additional condition of eq.(25) provides the density of both the positive and negative kinks: 

kTean 2     ,
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and the average distance between the kinks  
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Combining eqs.(13),(20), and (28) we obtain the step propagation rate as a product of the driving force 

and kinetic coefficient, st: 
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For the steps on prismatic face KH2PO4 (KDP),  the activation barrier, E – uM, was measured to be 

9.8kcal/mol,  = 9.68.10
-23

cm
3
 10

-22
cm

3
, Ce = 1.125.1021cm

-3
, st = 7.8.10

-2
cm/s at T = 31

o
C (306K) 

[26].   With that activation energy,  = 6.10
12

 1/s, a = 10
-7

cm, a/ k = 0.25 (four lattice spacings between 

the kinks), kinetic coefficient st from eq.(30) is 2.10
-2

cm/s, about 4 times less the experimental figure  

7.8.10
-2

cm/s.  Just to feel the numeric of the process, at Ce = 0.11,  and st = 7.8.10
-2

cm/s the exchange 

flux at the kink at equilibrium, eq.(22),  is w  3.10
4
units/s of which  1% is incorporated at the 1% 

supersturation.  For the steps on the same prismatic face of the NH4H2PO4 (ADP), the step kinetic 

coefficient is  5 times higher than for the KDP. The KDP vs ADP difference, as well as the inaccuracy in 

the eq.(30) should come from the simplicity of the assumptions on which this equation is based.   In 

particular, we ignored difference in attachment/detachment rates of PO4
3-

, HPO4
2-

, H2PO4
-
, K

+
. NH3

-
, and 

several types of corresponding activated complexes, solution acidity controlling concentrations of the 

phosphate and hydrogen ions, difference in  hydration heat between K
+
(81kcal/mol) and 

NH4
+
(78kcal/mol), difference in vibration frequencies  of the ions present in the complexes, some, 

though probably small, difference in kink density.    Evaluation of all these complexities is the matter of 

future.  

The usually observed face growth rate is described by eq.(12).  Together with eq.(30) it suggests that the 

kinetic coefficient for the face is just
st

p  where p characterises the step density  (see Sec.2.5) Table2 

summarizes the measured step and face kinetic coefficients for inorganic and protein crystals.  Both 

coefficients for inorganic salts are typically 10-100 times lower than for proteins.  The reason may be 

twofold.  One, is larger entropic incorporation barrier for much larger protein ions bearing usually both 

positive and negative charges. Two, is larger potential energy barriers also stemming from the large size 

of protein molecules size.    

Table 2. 

  



According to eq.(9), at the interface between crystal and aqueous solution the kink energy is 

kTa
2

2/ . This eq.(9) summarizes experimental measurements of the free surface energy from 

nucleation rate.  Therefore the above estimate of the kink energy presumes low surface entropy 

determined by the kink density.  This presumption is valid if the overall density of kinks on the interface 

is  only a small portion of all molecular sites.   This is certainly true for the smooth faces but may be less 

exact for the surface of a small nucleus.  From eq.(9), the “dangling bond”, kink and interface energy are 

the higher the lower the solubility and 1/
2

kTa .  The latter inequality suggests that the close packed 

lattice planes should be smooth.  Indeed, the crystals in solutions are typically faceted, i.e. are below the 

roughening transition.  Also, as it may be expected, the steps forming spirals around screw dislocations or 

islands from 2D nucleation are rounded on the faces of highly soluble salts, like KDP 

(
321

10.1.1  ,11.0 cmCC
ee

) and ADP (
321

10.2  ,22.0 cmCC
ee

) [26].  These steps are, 

however polygonized on the faces of sparingly soluble salts like biominerals.  For example, 

hydroxyapatite, Ca5(PO4)3OH, has solubility product K = 4.7.10
-59

 (mol/liter)
9
 for all 5+3+1=9 ions 

produced by one molecule, or K
1/9 

=3.310
-7

 mol/liter = 2.10
14

 ions/cm
3
.  Proteins have usually very 

moderate solubility of several mol% but show both the severely kinked steps, like on the (111) face of 

ferritin (Fig.6) and the very straight steps with one kink per hundreds molecular spacing on lysozyme 

(Fig.7).   

The kinetic coefficient eq.(30) was outlined assuming the equilibrium kink density.  This density should 

be reached on step segments much longer than the distance between kinks and over the time essentially 

exceeding the time for creation or annihilation of a kink.  However, the situation is different in the 

opposite case, 12/ kT .   That situation is expected and observed, for instance, on the faces of 

slightly soluble materials, eq.(9), Fig.7, on crystal – vapor face at low temperatures.  Under those 

conditions, the interkink distance may reach m scale and be comparable or even longer than the typical 

length scale of the interface micromorphology.  For instance, it may exceed distance between impurities 

pinning the step or length of the first step segment of the polygonized spiral adjacent to the screw 

dislocation outcrop.   The low kink density may also depend on supersaturation, as is discuss below.   

At equilibrium, the average number of species in a crystal is preserved.  Therefore some new kinks may 

be formed by two species detached from the “in the step” positions (leaving the a2  long vacancy there), 

and then reattached at the neighboring kink free step segment. That process creates four kinks.   Over the 

time, the kink generation by fluctuations is compensated by mutual annihilation of kinks of the opposite 

signs moving back and forth along the step.   As supersaturation increases, more and more kinks are 

generated as “1D nuclei”.   Namely, imagine a first particle that is attached from solution on a straight 

kink free step segment. Unlike a particle at the kink, that “at the step” particle is bound by two rather by 

the three bonds.   Therefore it has a larger chance to escape that a particle in the kink position.   However, 

as soon as a second particle joins the first they both turn out to be in the kink position, so that two kinks 

are formed. A third particle has a chance to be attached to the pair and make a triplet before the pair loose 

one of the particles.  This pair, triplet, etc. has the more chances to be saved in the crystal forever the 

larger the supersaturation and the longer the segment of the new row is.   Evidently, at equilibrium, none 

of the attached particles will stay forever.  



Up to what supersaturation the equilibrium approximation for the kink density, eqs.(27),(28) is valid?  

Each kink propagate along the step at the rate )(v wwa
k

 and simultaneously fluctuates with the 

diffusivity 2/)(
2

wwaD
k

 .   For mutual annihilation between the nearest positive and negative 

kinks they should cover the average interkink distance k.   The time required for the annihilation of two 

kinks progressing at the relative rate 2 )(2/ is v wwa
kk

.  This time is long near equilibrium and 

quickly decreases as supersaturation rises.  Annihilation may also occur due to diffusion and takes 

average time )(4/8/
222

wwaD
kkk

weakly dependent on supersaturation.  At the steady state, 

the kink generation and annihilation rates are equal to one another while the balance should be controlled 

by the fastest annihilation path.   Therefore the kinetic factors, including the 1D kink nucleation, rather 

than equilibrium fluctuations, should control the kink density and step rate if 

kee
aCCC /4~/)(  .                                                                                                (31) 

For orthorhombic lisozyme, at the interkink distance k = 75a, the kinetics should prevail at 

supersaturations >  5%.  

The rate of the “1D nucleation” on an infinite kink free step is [27,28]:  

))(2(

)(2
)./(

wwwa

www
scmnucleiJ

a

a ,                                                                       (32) 

where 
aa

ww  and , are the frequencies of attachment and detachment of the species at the step.   In the 

same simple cubic lattice model, wkTww
a

)/exp( .   In the steady state, the kink density is 

constant, meaning balance between the 1D nucleation and mutual annihilation: 

)(     v,2/vv2
k

2
wwaJnnn

kk
.                                                                      (33) 

Then the kinetic, rather the equilibrium, steady state kink density is: 

2/1
)v/2(

k
Jn  .                                                                                                                                    

(34) 

The kinetic density by eq.(34) may be shown to coincide with the equilibrium density eq. (27) at low 

supersaturation, but was not yet experimentally checked.  The eqs.(33),(34) may be needed to discribe the 

weekly fluctuating straight steps at elevated supersaturations.  

3.3.  Step Generation and Face Rate. 

Smooth crystal face cannot grow unless steps with the kinks are present on it.  The steps may be 

generated by either 2D nuclei or a dislocation crossing the face and having a component mh of its Burgers 

vector normal to the face.  Here h is the lattice spacing normal to the face and m = 1,2,3… or  1/2, 1/3, 

etc.  Such a screw component of the Burgers vector generates the step(s) terminating at the point where 

the dislocation crosses the face.  If m > 2,3,… the dislocation outcrop typically is not a point. Rather, it 

occupies an area with a circumference 2L of the order of a micrometer. As soon as supersaturation or 



supercooling is applied the step starts to propagate and forms a spiral around the immobile dislocation 

outcrop.  If the kink density on the step is only slightly less than the reciprocal lattice spacing the step 

growth rate is isotropic within the face (Sec. 2.4). In this case, the spiral is rounded and forms a rounded 

pyramid.  Steps with low kink density have anisotropic propagation rate over the face and the spiral is a 

polygonized pyramid. Such a pyramid is often called vicinal hillock. The slope of the pyramid, p,is 

typically small, 3.10
-2

 to 10
-3

.  The slope determiners the power of the step generation and the face 

growth rate.  If the spiral is rounded, 

         mLhLmhp
stcc

/)29.5(   ,/    ),219/(
c

,                      (35) 

where 
c

is the radius of the 2D nucleus and  is the distance between steps.  It appearance in eq.(35) 

have nothing to do with the real nucleation event but comes from the Gibbs-Thomson law:  the step at the 

point of dislocation outcrop is unable to move and thus must acquire the curvature of the 2D nucleus.  The 

factor 19 may not be applicable to the polygonized pyramid since the Gibbs-Thomson law may not be 

applicable to the short step segments of which length is comparable with the interkink distance, Sec.2.4 

[29].  In the case of the square spiral and pyramid,  

           mLL
c

/)24( ,                                                                                                   (36) 

where Lc is the length of the squared critical nucleus.   That is, the face rate is about twice as low than in 

case of the rounded vicinal hillock – at the same other parameters.   

The step generation rate, that is the vicinal slope, p, increases about linearly with the low driving force, 

and reaches saturation at larger driving force, eq.(35),(36).  The step propagation rate is the linear 

function of the driving force, eq.(30).  Therefore the layer-by-layer growth rate of a crystal face increases 

as ( /kT)
2
 at low supersaturation or undercooling and linearly at larger driving force.  

Dislocation free crystalline faces grow by 2D nucleation.  Their rate is practically zero at /kT <  1 and 

increases exponentially at the higher driving force.   

At sufficiently high supersaturation, more than 10% for KDP in solution or melt growth and probably > 

100% in vapor growth or CVD, the 2D nucleation assures the step density exceeding that provided by 

screw dislocations.  Therefore this is the the screw dislocation mechanism that is crucial for growth near 

the phase equilibrium while the 2D nucleation drives growth far away from equilibrium, mainly in MBE 

and CVD epitaxy, and from the vapor.  The 2D step generation mode may be enhanced by defects 

lowering the 2D nucleation barrier.   

Consideration in terms of activated complex at the kink, eq.(20), is valid also for layer-by-layer growth 

from a melt, for instance, for step propagation over the Si (111) facet of silicon, or for the layer-by-layer 

growth of Ga crystal, the rare metal having smooth interface in contact with its own melt.  In one 

component systems, the potential barrier for crystallization might exist only if the interface is atomically 

smooth so that the layer-by-layer growth mode operates.  This barrier is probably low and is of mainly 

entropic (ordering) nature, with some possible contribution from viscosity.  In case of the rough interface, 

completely different mechanism discussed below in Sec.3 seems to operate.  Kinetic coefficient for the 

step propagation at the crystal – melt interface is difficult to evaluate since it is hard to measure 



undercooling at the growing face.   However, indirect estimates for the step kinetic coefficient on the 

Si(111) face growing from the melt is T  50cm/s.K [30], close to the coefficient roughly estimated to 

exceed 100cm/s.K for metals.  The measurement difficulties come, as usual, from the difficulty to 

evalueate the driving force immediately at the growing face or the step. 

4. NORMAL GROWTH MODE  

4.1.  Roughening Transition And Kinetic Roughening.   

The minimal free step energy, eq.(26), at the equilibrium kink density, eq.(27) reads:   

)21(ln)/( akT
st

 .                                                                                           (37) 

As the kink energy to the thermal energy ratio, /2kT, and thus its exponent  decreases, the step free 

energy decreases.  That means the meandering becomes easier, and the kink density rises.   

Correspondingly, at the same absolute driving force, the steps grow faster.  The free surface energy 

remains positive until  = ½, or /2kT = ln2 = 0.69.   At the lower /2kT the step free energy, eq.(37) 

vanishes meaning transition from the smooth to the rough interface and, correspondingly, from the layer-

by-layer growth to the faster and transport controlled normal growth.   Since the step free energy becomes 

small near the roughening transition the work to create a 2D nucleus on a smooth terrace and the nucleus 

radius also becomes small.  These quantities vanish proportional to 
2

st
 and  to 

st
, respectively.  As a 

result, the nucleus diameter becomes comparable with the molecular size.   The  density of nuclei 

becomes comparable with the density of molecular sites in the melt growth or the density of adsorbed 

species in the vapor or solution growth – even below the roughening transitions.   In other words, the 

interface becomes rough for the kinetic reasons.   This phenomenon is called kinetic roughening.  The 

larger is supersaturation or undercooling the further below the thermodynamic roughening transition the 

kinetic roughening may occur.   Onset of kinetic roughening enables morphological instability and growth 

of dendrites, difference in trapping of impurities and vacancies all over the growing interface and 

ultimately transition to the diffusion limited aggregation mode of deposition.  

Crystallographic anisotropy of the roughening transition follows from more rigorous analysis [5] and is 

determined by the relationship between the roughening temperature TR and the distance d  between 

crystallographic planes parallel to the interface under consideration:  

       /2
2

dkT
R


.                                                                                                            (38) 

Here the surface stiffness )/(
22

is taken at the orientation of the interface under 

consideration.  It is also assumed that the stiffness with respect to the two major angles  characterizing 

deviations from this orientation is the same.   The less compact the lattice plane the larger its Miller 

indices, the smaller is the interplanar distance d and thus the roughening temperature.  This seems to be 

the reason why equilibrium shape of small metal particles or tips, even in vacuum, is mainly about the 

sphere slightly cut by planes corresponding to the closest packed orientations with simple Miller indices.  

The mainly rounded shape is immediately replaced by polygon as soon as the crystal start growing.  This 

fact beautifully demonstrates that the crystal growth rate is much more anisotropic than the surface free 



energy.  In other words, the growth shape is controlled by the growth rate anisotropy rather than by the 

anisotropy of the surface energy.  These two anisotropies are both controlled by the crystal structure so 

that the major closest packed planes may show up in both equilibrium and growth forms.  However, size 

of different faces may be completely different.   

4.2.   Normal Growth Of A Diffuse Interface. 

The term “normal growth” presumes that, opposite to the layer-by-layer growth, attachment of new 

spesies to the growing crystal occurs at any point of the interface rather than only at kinks at the steps.  

Therefore the normal growth does not need 2D nucleation of new layers and its dependence on the 

driving force is linear.  The rough interface may be viewed as the lowest right image in the Fig.2. That 

model presumes that each atom is either “solid” or “liquid”, that is, the crystal – medium interface is 

precisely localized down to atomic scale.   In this case the rough interface is understood as the one where 

the fraction   =  (number of “solid”)/(number of “solid” + number of ”liquid”) atoms in each lattice plane 

parallel to the interface changes continuously from 1 in crystal to 0 in the liquid phase.  The transition 

occurs within the layer of several, 5 – 10 lattice spacing thick.   However, an isolated or nearly isolated 

atom cannot be solid or liquid.  Therefore the transition from the crystalline order at  = 1 to the liquid 

disorder at  = 0 should be continuous on the atomic or molecular level, as shown in the upper portion of 

the Fig.8.  In other words, on the way from the crystal to the liquid, each atom or molecule should 

become more and more delocalized via increasing the amplitude of its thermal vibrations [31,32].   That 

view of the really diffuse interface is consistent with molecular dynamic simulation [33, 34].    

Within this picture, growth of the diffuse layer may be seen as simultaneous gradual formation of each 

plane parallel to the interface.   The essential consequence of the delocalized interface concept is lack of 

activation barrier for the melt growth at the interface - for at least elements and sufficiently symmetric 

organic molecules.   Indeed, in this case, the activated complex may be viewed as the whole transition 

layer built of numerous molecules thus smearing out the unique reaction path and the potential barrier.     

Within the delocalized interface concept, growth rate of the interface is a product of the thermal rate of a 

free atom, the dimensionless driving force for crystallization and a constant: 

       T
m

kT

kT

s
const

kTm

kT
constV

2/12/1
)()(  .                                                    (39)                                                                                                                        

The constant includes the sum of reciprocal lattice vectors of the growing crystal and the correlation 

length of particles in the liquid.   The vectors present various lattice planes, which characterize the density 

waves of which superposition the crystal is to be built.  Projections of these vectors to the normal to the 

growing interface determines the slight, < 10% crystallographic anisotropy of the growth rate.  The 

correlation length represents the liquid structure and typical times of the order of 
2/1

)//( mkTa .  For Pb, 

the latter time is 2.10
-12

s.  Some theoretical numerical estimates are seen in Fig.8 and may be found in 

[31,32,33].  The kinetic coefficient for lead was experimentally measured in [34] to be close to the 

predicted value, Fig.8.  
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Fig.8. Growth of a crystal from the melt within the diffuse layer intermediate between the crystal on the left and liquid on the 

right.  The melt consists of simple particles symbolized by moving spheres in a. Atomic planes shown in a correspond to the 

density waves n(z) shown in b.  Density waves n(z) are normal to the z-axis in b and are presenting positions of the sphere 

centers subject to thermal vibrations.  The wave period corresponds to the wave vector Gz of the reciprocal lattice of the crystal.  

The growth occurs via simultaneous ordering of the atoms into several crystal lattice planes Gz.  The growth front is normal to 

the z-axis and moving to the right at the rate V.  Atoms are not only being concentrated into the Gz planes normal to z to form 

this density wave.  Simultaneously, ordering is going on within each plane so that the density waves with the wave vectors G 

different from Gz are being built.  As the growth precedes the amplitude of each wave rises from zero in the bulk liquid to the 

maximum within the crystal lattice.  The panel c presents the ordering flux jG into the Gz planes.  The flux is proportional to the 

gradient of the order parameter G corresponding to the density wave normal to G.  

5. CONCLUSION 

Current understanding of interface between crystal and surrounding vapor, melt or solution allows to 

estimate the interface energy, free energy of steps on smooth interface and to distinguish layer-by-layer 

from normal crystal growth mechanisms.   The activated complex approach is instrumental in evaluation 

of step and face kinetic coefficients of crystallization within an order of magnitude.  The diffuse interface 

concept provides more realistic view on the rough crystal – melt interface, predicts rather accurate growth 

kinetic coefficient and predicts negligible attachment/detachment barrier for simple liquids.  This 

prediction is hardly applicable to a step of the singular interface.  
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